Probabilistic Shape Analysis for Medical Image Segmentation

نویسنده

  • Polina Golland
چکیده

Motivation: Segmentation is a fundamental problem in medical image understanding. Most of the further analysis relies on the results of the segmentation procedure. Unfortunately, standard image processing techniques fail to deliver satisfying results for most medical applications. Many types of tissues have similar magnetic characteristics, and therefore have overlapping intensity ranges in the resulting images. Intensity variations between different scans and presence of a bias field complicate the problem even further. Shape description can provide spatial information that will allow to distinguish anatomical structures based on their location and shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generic Probabilistic Active Shape Model for Organ Segmentation

Probabilistic models are extensively used in medical image segmentation. Most of them employ parametric representations of densities and make idealizing assumptions, e.g., normal distribution of data. Often, such assumptions are inadequate and limit a broader application. We propose here a novel probabilistic active shape model for organ segmentation, which is entirely built upon non-parametric...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Graph Cuts Framework for Kidney Segmentation with Prior Shape Constraints

We propose a novel kidney segmentation approach based on the graph cuts technique. The proposed approach depends on both image appearance and shape information. Shape information is gathered from a set of training shapes. Then we estimate the shape variations using a new distance probabilistic model which approximates the marginal densities of the kidney and its background in the variability re...

متن کامل

Posterior shape models

We present a method to compute the conditional distribution of a statistical shape model given partial data. The result is a "posterior shape model", which is again a statistical shape model of the same form as the original model. This allows its direct use in the variety of algorithms that include prior knowledge about the variability of a class of shapes with a statistical shape model. Poster...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997